

"Research Pathways to the Next Generation of Equipment for Substations and

Top Cables and Conductors Needs

- #1 Conduct materials research to increase the transmission corridor power density with the goal of achieving power densities for cables and conductors of 50x ACSR by 2025
- #2 Develop overhead conductor to increase capacity of existing corridors by at least 2x with same ACSR characteristics (sag, temp).
 Achieve power densities 5x ACSR at current costs by 2010
- #3 Demonstrate/showcase installation of high-temperature, low-sag conductors (include value proposition)
- #4 Develop methodology (diagnostics) to assess in-situ condition of underground cable.
 - End of life
 - Partial discharge (energized)
 - Dielectric strength

Chicago, Illinois October 20-21, 2004

"Research Pathways to the **Next Generation** of Equipment for Substations and

Top Cables and Conductors Needs

- #5 Install real-time monitoring on transmission to determine realtime ratings and sag to improve capacities and reliability and prevent exceeding clearances – on long lines (100-200 miles)
- #6 Develop less expensive (trenchless) directional boring technologies for new and replacement installations and reduce O&M cost of underground cables
- #7 Develop qualification standards for high-temperature, low-sag conductors. Address reliability and environmental concerns
- #8 Prove out (validate) dynamic thermal circuit-rating technologies for better operations and secure acceptance of DTCR tools and techniques into RTOs, ISOs, and ITCs

Chicago, Illinois October 20-21, 2004

"Research Pathways to the **Next Generation** of Equipment for Substations and

Key Themes and Discussion Points

- Increased capacities cause other impacts: reliability, EMF, other
- Need is now. How long to achieve advanced performance (degradation, life issues)
- Need to look beyond normal conditions to heavy duty stressed conditions and impact on tower design and reliability
- Promising products/technologies exist (close to commercial).
 Need to get utility acceptance and use; then implement continuous improvement,
- Reliability and cost effectiveness
- Interpretation of data: transform information into knowledge
- Another area to explore is high voltage UG systems in addition to HTS.

Chicago, Illinois October 20-21, 2004